

FACT SHEET

Task 13 Reliability and Performance of Photovoltaic Systems

Floating Photovoltaic Power Plants

A Review of Energy Yield,
Reliability and Maintenance

January
2026

What is Floating PV?

Photovoltaic systems are essential for the transition to sustainable energy, reducing fossil fuel dependence and mitigating climate change. Although PV requires minimal land area – PV can meet the European Union's energy needs using only 0.26% of its land – space for deployment is often scarce in densely populated regions.

Installation of FPV on a hydropower dam in Europe.

Floating photovoltaics (FPV) offer an effective solution to land-use challenges by installing PV systems on floating structures in water bodies. FPV shows strong potential to support climate targets, but still faces challenges like regulatory barriers, cost competitiveness compared to ground-based PV (GPV), and uncertainties about environmental impacts and system reliability.

Cumulative installed capacity reached

7.7 GW

globally by 2023
(50% in China).

Almost
90%

of the installed FPV capacity is in Asia.
The Netherlands and France are the largest markets outside Asia.

Categorization of Floating PV

Inland FPV

- **Static freshwater bodies**
 - No waves
 - Limited wind
- **Inner waters**
 - Small to medium (1 m) waves
 - Water areas of 1-3 km²
- **Larger inner waters**
 - Medium waves (> 1 m)
 - Area > 3 km²

Marine FPV

- **Nearshore FPV**
 - Reasonably sheltered area
 - Significant wave height < 2-3 m
- **Offshore FPV**
 - Unsheltered water
 - Significant wave height > 2-3 m

Development of Floating PV

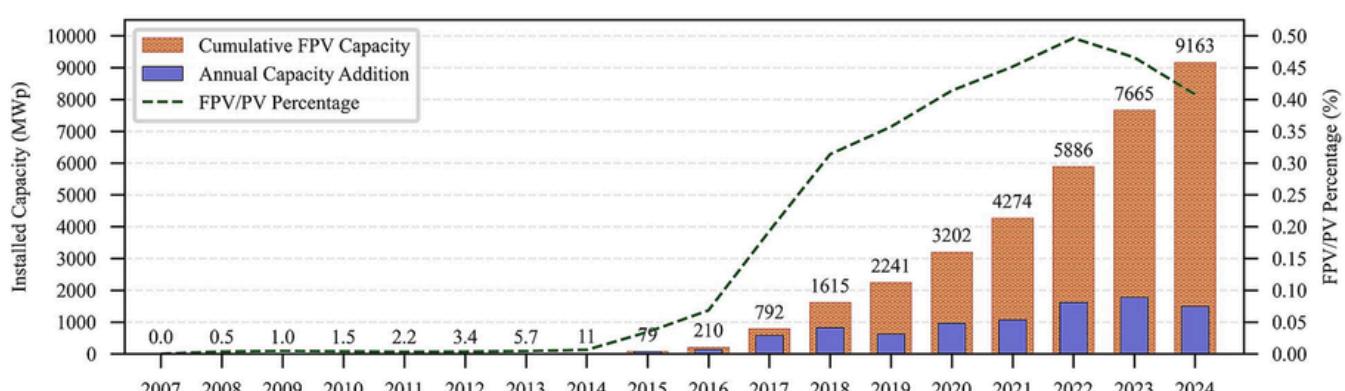
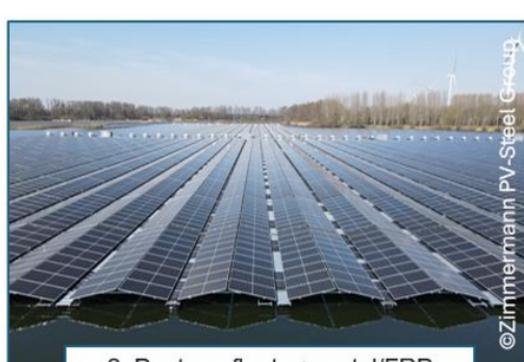


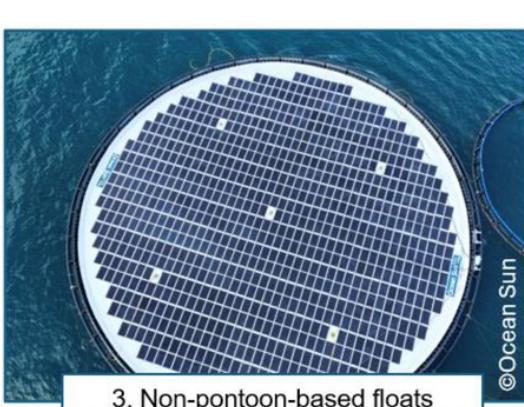
Figure: Walpita (2024). Source Data: SERIES database and Rodríguez-Gallegos (2025).

Examples of Floating PV Systems


1

1. Pure pontoon-based floats
(examples: Sungrow, Northman, CTI)

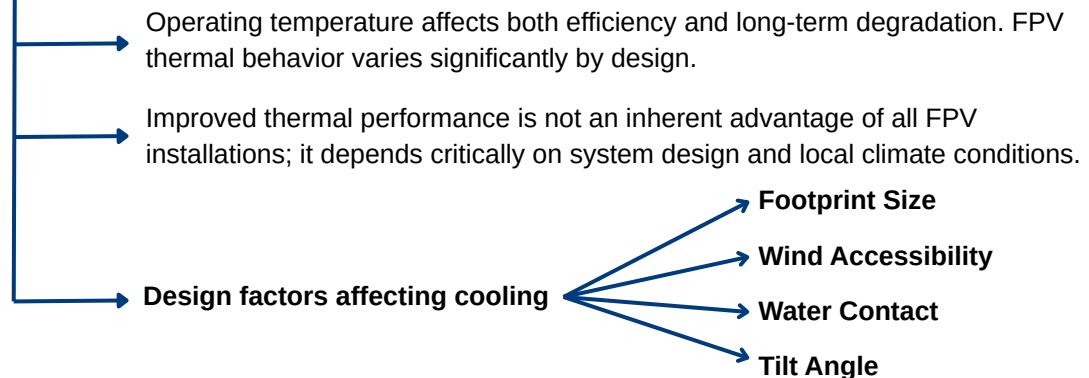
- Fully composed of high-density polyethylene (HDPE) floats supporting modules directly
- Market leaders: Sungrow (27%), Ciel & Terre (12.7%), Northman (14.9%)
- Float properties and design have great development potential, particularly regarding tilt angle and electrical configuration.
- Most widely deployed FPV technology globally


2

2. Pontoon floats + metal/FRP
(examples: Scotra, Zimmermann)

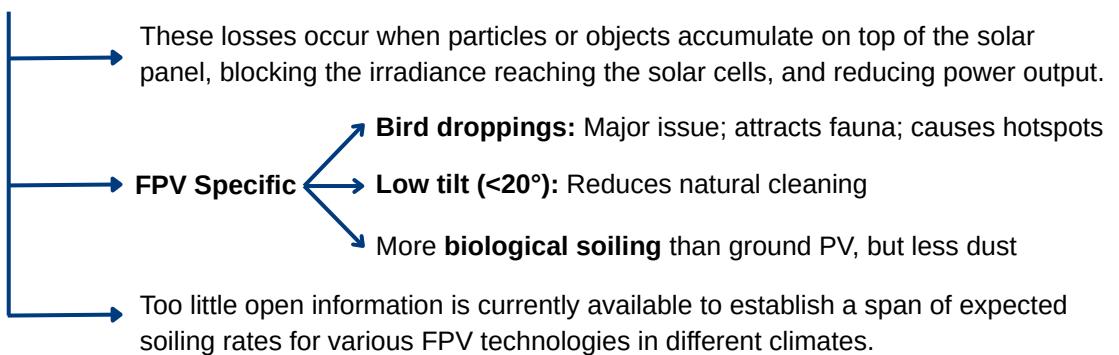
- Metal or fiber-reinforced plastic (FRP) structures mounted on floats or pipes
- Floats support the structural frame, not individual modules
- Example: ZIM Float (>250 MW installed, dominant in Europe), Scotra (3.4% market share)

3


3. Non-pontoon-based floats
(example: Ocean Sun, Solar Duck)

- Different technologies based on other floating structures.
- Example: Ocean Sun (patented membrane technology with HDPE buoyancy ring)
- Horizontal mounting with modules in thermal contact with water
- Different environmental impacts: unique irradiance, wave effects, and cooling behavior

Energy Yield: Critical Parameters


Thermal Losses

Wave-Induced Losses

Soiling Losses

Optimisation for Different Conditions

- >>> The economic viability of PV power plants is fundamentally linked to their lifetime energy yield.
- >>> Degradation rates and the overall lifespan of the power plant directly impact electricity production and the levelized cost of energy.
- >>> Climatic and environmental factors play a major role in degradation and are by nature location specific.
- >>> In FPV systems, components are exposed to stress factors that differ significantly from those in ground-mounted PV.
- >>> Mechanical, thermal, chemical, and electrical stresses vary depending on float design, anchoring systems, and electrical layouts.
- >>> Stress profiles in FPV installations are not yet fully characterised or quantified.

As a result, optimisation strategies for FPV systems must account for local environmental conditions and specific FPV technologies to ensure reliable long-term performance.

FPV Specific Stressors

	Temperature
	Extreme Temperature Fluctuations
	Wave Loads
	Wind Loads
	Humidity
	Shading
	Biofouling & Soiling
	Flora & Fauna
	Tidal Variations
	High Voltages
	Corrosive Compounds
	UV Radiation

Early Failures or Reliability Concerns in FPV Systems

a) Rubbing damage on an HDPE part

b) Rubbing and stress damage on an HDPE part

c) Torsion damage on an aluminium part

d) Loss of mechanical integrity due to wave forces

e) Damage on PV modules due to wave slamming

f) Biofouling of underwater component

g) Corroded junction box

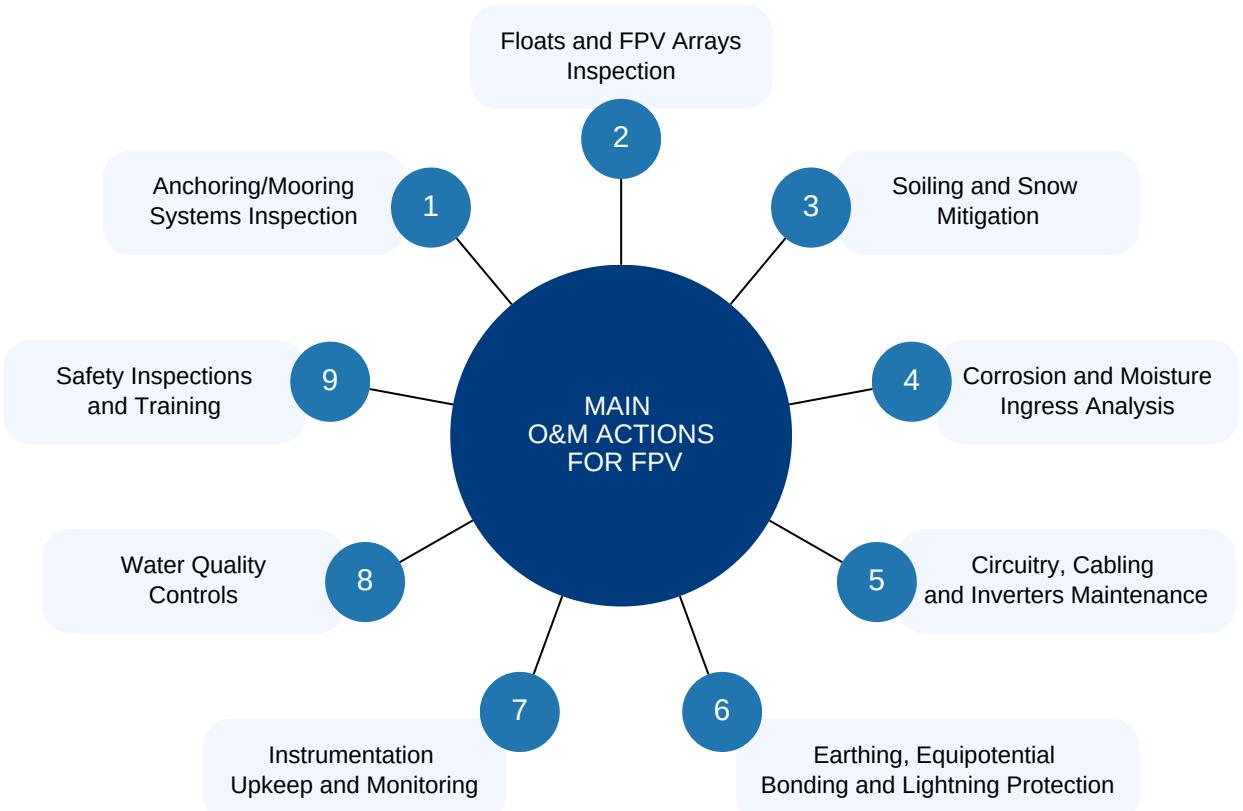
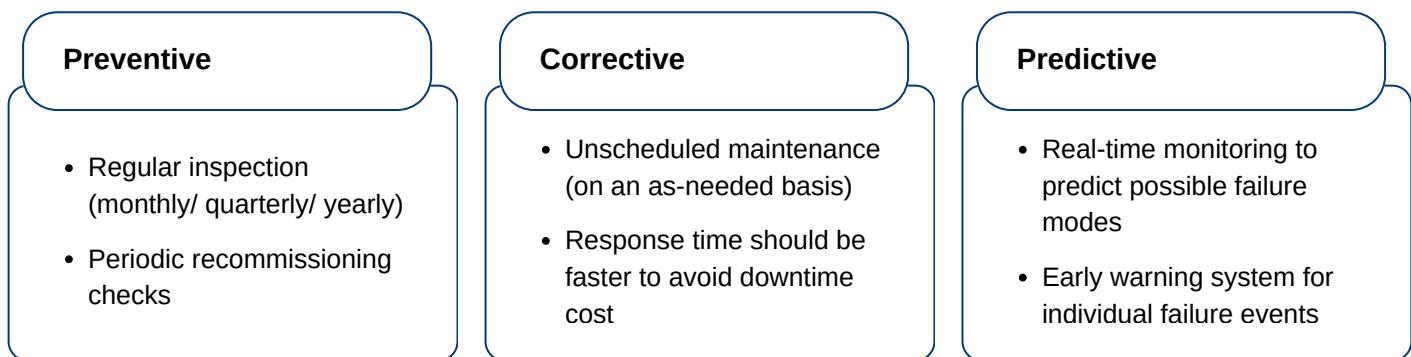
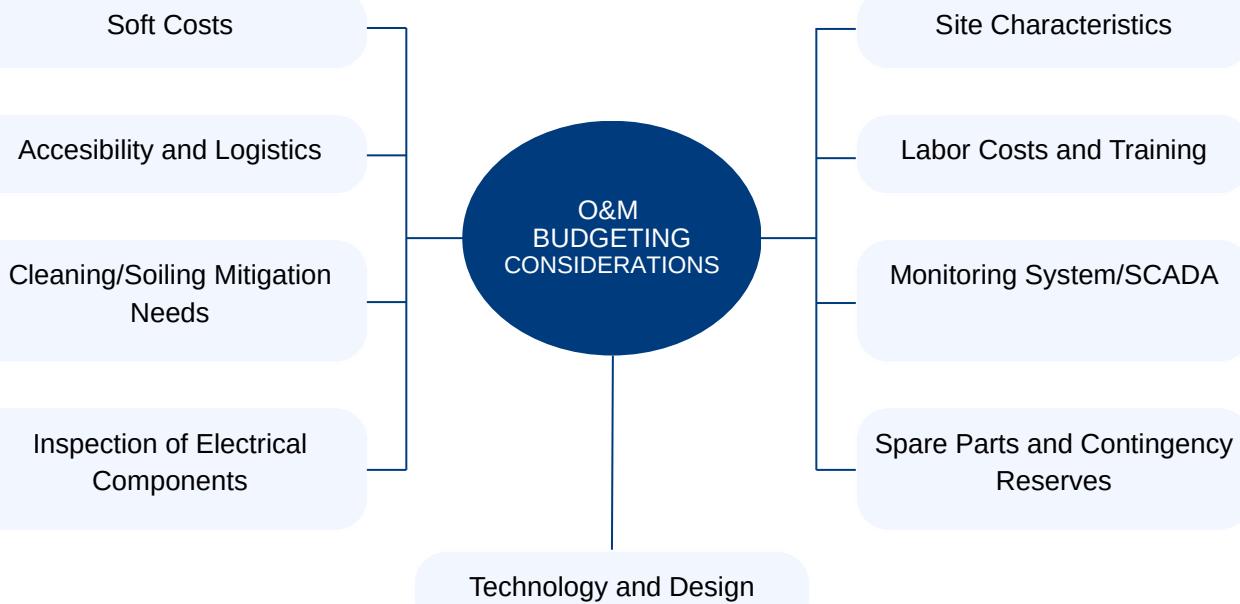


h) Partly delaminated edge seal

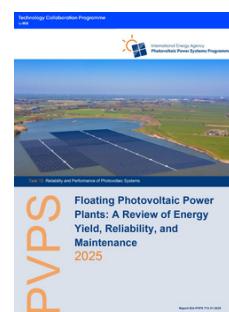
Image Credits:

- a, b, c, d, e, and g: TNO
- f: Oscar Bos/Wageningen Marine Research
- h: Institute of Electrical and Electronic Engineers (IEEE)


Operation and Maintenance (O&M)

Challenges:

- >>> Addressing additional risks associated with the water-based working environment;
- >>> Ensuring accessibility and reachability for all maintenance activities across all components;
- >>> Providing safe and cost-effective access to the floating platform;
- >>> Clear cleaning and maintenance requirements are essential, as poor accessibility increases O&M effort and downtime.



FPV Research Priorities

- ">>>> Understanding and quantifying the **unique operational conditions and stressors** FPV systems face, including wave action, wind loads, temperature, and biological fouling.
- ">>>> Developing and verifying **models and methodologies to accurately predict** how these stressors impact FPV system performance over their lifetime and under different operating conditions.
- ">>>> Develop methodologies and equipment to **automate monitoring and maintenance operations** for FPV power plants.
- ">>>> Understanding and quantifying **environmental impacts** of FPV systems: evaluating the potential effects of FPV on water quality, aquatic ecosystems, and surrounding habitats.

Want to know more?

If you are interested in more insights and detailed data, explore the full ["Floating Photovoltaic Power Plants: A Review of Energy Yield, Reliability, and Maintenance" report](#).

About IEA PVPS Task 13

Task 13 aims to enhance the quality, performance, and reliability of PV modules and systems by summarizing technical aspects, gathering global data, and disseminating results through reports, workshops, webinars, and web content. Task 13's expertise ensures relevant analysis for stakeholders, contributing to technology advancement, risk mitigation, and standardization in PV research and industry.

Follow and subscribe!

Photo Front Page:
PV Floating System in
Zwolle, Netherlands.
Copyright BayWa r.e

Bibliography

Driesse, A., Stein, J. and Theristis, M. (2022). Improving common PV module temperature models by incorporating radiative losses to the sky. Sandia National Laboratories, SAND2022-11604. <https://doi.org/10.2172/1884890>.

DNVGL AS (2021). Design, development and operation of floating solar photovoltaic systems. Recommended Practice DNVGL-RP-0584. Høvik: DNV.

Dörenkämper, M., de Jong, M. M., Kroon, J., Nysted, V. S., Selj, J. and Kjeldstad, T. (2023). Modeled and measured operating temperatures of floating PV modules: A comparison. *Energies*, 16(20), 7153. <https://doi.org/10.3390/en16207153>.

Faiman, D. (2008). Assessing the outdoor operating temperature of photovoltaic modules. *Progress in Photovoltaics: Research and Applications*, 16(4), pp. 307–315. <https://doi.org/10.1002/pip.813>.

Kjeldstad, T., Lindholm, D., Marstein, E. and Selj, J. (2021). Cooling of floating photovoltaics and the importance of water temperature. *Solar Energy*, 218, pp. 544–551. <https://doi.org/10.1016/j.solener.2021.03.022>.

Liu, H., Krishna, V., Leung, J. L., Reindl, T. and Zhao, L. (2018). Field experience and performance analysis of floating PV technologies in the tropics. *Progress in Photovoltaics: Research and Applications*, 26(12), pp. 957–967. <https://doi.org/10.1002/pip.3039>.

Nysted, V. S., et al. (2025). Modelling wave-induced losses for floating photovoltaics: Impact of design parameters and environmental conditions. *Solar Energy*, 293.

Rodríguez-Gallegos, C. D. (2025). Global floating PV status and potential. *Progress in Energy*, 7, 015001. <https://doi.org/10.1088/2516-1083/ad9074>.

SERENDI-PV Project (2024). Report D8.14. Horizon 2020, Grant Agreement No. 953016. Available at: <https://serendipv.eu/>

SolarPower Europe (2023). Floating PV best practice guidelines. Version 1.0. Brussels: SolarPower Europe.

Walpita, H. (2024). Growth of global installed capacity of floating photovoltaics from 2007 to 2024. figshare. <https://doi.org/10.6084/m9.figshare.27451668.v4>.

Authors

Main Authors:

Josefine Selj, IFE, Kjeller, Norway

Stefan Wieland, Fraunhofer ISE, Freiburg, Germany

Ioannis Tsanakas, CEA INES, Le Bourget-du-Lac, France

Editors:

Josefine Selj, IFE, Kjeller, Norway

Giosuè Maugeri, RSE, Italy

Ulrike Jahn, Fraunhofer CSP, Halle, Germany